

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Výukový materiál zpracovaný v rámci projektu "Výuka moderně" Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Šablona: III/2 Informační technologie

Sada: 3

Číslo materiálu v sadě: 7

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Název: Goniometrické funkce v MS Excel

Jméno autora: Jan Kameníček

Předmět: Práce s počítačem

Jazyk: česky

Klíčová slova: tabulka, funkce, vyhledávací funkce, svyhledat

Cílová skupina: žáci 1. ročníku střední odborné školy, obor strojírenství

Stupeň a typ vzdělání: střední odborné

Očekávaný výstup: Žáci se naučí používat vyhledávací funkci "svyhledat".

Metodický list/anotace

Prezentace představuje žákům první z několika vyhledávacích funkcí, funkci "svyhledat", která při výpočtech umožňuje využívat údaje z jiných tabulek či seznamů v sešitě aplikace MS Excel, přičemž tyto tabulky prohledává po sloupcích.

Datum vytvoření: 12. ledna 2013

Goniometrické funkce v MS Excel

MS Excel má ve svém rejstříku mnoho matematických funkcí, a mezi ně patří mimo jiné také základní goniometrické funkce, tj. sinus, cosinus a tangens.

Všechny tyto tři funkce mají jen jediný argument, a sice číslo, jehož funkci hledáme.

Mezi goniometrickými funkcemi aplikace MS Excel však nenajdeme funkci kotangens. Důvodem je, že se ve své podstatě jedná jen o převrácenou hodnotu funkce tangens, takže cotg x lze vypočítat jako 1/tg x.

Postup

Zápis goniometrických funkcí v MS Excel vychází z běžně užívaných zkratek. Všechny tyto funkce mají jen jediný argument: číslo, jehož funkci hledáme.

Způsob zápisu funkcí je uveden v tabulce níže:

Funkce	sinus	kosinus	tangens	kotangens
Zápis v Excelu	=SIN(číslo)	=COS(číslo)	=TG(číslo)	=1/TG(číslo)

Radiány

Při výpočtech si však musíme dát pozor na to, že Excel očekává v argumentu goniometrických funkcí hodnoty zadané v radiánech.

Pokud tedy máme hodnotu úhlu uvedenou ve stupních, pak ji musíme převést na radiány.

Matematicky lze převod provést tak, že hodnotu úhlu vynásobíme hodnotou $\pi/180 - z$ ápis v MS Excel je PI()/180.

Kromě toho však můžeme také využít převodní funkce "Radians", viz následující snímek.

Radiány

Funkce "Radians" má v závorce také jen jeden argument: hodnotu převáděného úhlu ve stupních, kterou převede na

radiány, viz obrázek.

Výpočet sinu úhlu o 60 stupních tedy může vypadat například

následovně:

Příklad

Plocha závitu šroubu, který stoupá pod úhlem ψ =40° je zatížena osovou silou Q=20 N. Jakou silou F (N) je potřeba působit při povolování šroubu, jestliže součinitel smykového tření dvou styčných ocelových ploch je roven 0,1?

Sílu F vypočítáme z následujícího vztahu:

$$F = Q \cdot tg(\psi - \mu)$$

Sestavte následující tabulku s výpočtem této síly F.

	А	В	С	D	
1					
2	Q	ψ	μ	F	
		100	0.4		
3	20 N	40°	0,1		

Příklad – řešení

Příklad úplného řešení úlohy včetně výpočtu úhlu převedeného na úhlové stupně naleznete v následujícím odkazu:

List aplikace Microsoft Office Excel

Použité zdroje:

Text

• Podpora Office [online]. Microsoft Corporation, 2013 [cit. 2012-09-

02]. Dostupné z: <u>http://office.microsoft.com/cs-cz/support</u>.